
A computational framework for telemedicine

Ian Foster, Gregor von Laszewski, , George K. Thiruvathukal, Brian Toonen

Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Avenue, Argonne, IL 60439

Abstract

Emerging telemedicine applications require the ability to exploit diverse and ge-
ographically distributed resources. High-speed networks are used to integrate ad-
vanced visualization devices, sophisticated instruments, large databases, archival
storage devices, PC's, workstations, and supercomputers. This form of telemedical
environment is similar to networked virtual supercomputers also known as metacom-
puter. Metacomputers are already being used in many scienti�c application areas. In
this article, we analyze requirements necessary for a telemedical computing infras-
tructure and compare them with requirements found in a typical metacomputing
environment. We will show that metacomputing environments can be used to en-
able a more powerful and uni�ed computational infrastructure for telemedicine. The
Globus metacomputing toolkit can provide the necessary low level mechanisms to
enable a large scale telemedical infrastructure. The Globus toolkit components are
designed in a modular fashion and can be extended to support the speci�c require-
ments for telemedicine.

1 Introduction

In the last decade, dramatic advances in software and hardware technology
have changed the landscape for telemedical computing. Today, personal com-
puters have reached a performance level which one could have only dreamed
of, a couple of years ago. The increase in processor speed is accompanied by
the availability of memory to economical prices. New graphic cards let a PC
perform at almost workstation speed. On the high end, vector-supercomputers
are outperformed by distributed memory parallel architectures. Furthermore,
changes in software engineering are marked by the acceptance of object ori-
ented programming concepts and languages.

1 E-mail contact of the authors: fgregor,thiruvat,itf,tooneng@mcs.anl.gov

Preprint submitted to Elsevier Preprint 14 January 1998

Computer networks have evolved from local area networks to wide area net-
works. The new hardware enables the distribution of information in a global
\World Wide Web". The World Wide Web has established itself as a func-
tioning computing environment, accessible by the ever-increasing number of
online users. Starting from the desire to provide a mechanism for exchanging
data between scientists, it has reached the potential to become the computing
platform of the future. Hardware advances in the network technology, like the
introduction of the ATM technology (Asynchronous Transfer Mode), provide
the necessary backbone for the fast information exchange between computers.

Currently, the WWW is most frequently used for exchanging data, and allow-
ing online users to access information stored at remote sites. Besides redis-
tributing information, the WWW can be used to redistribute computations
on di�erent compute servers. Computations can be mapped to idle compute
servers or unique compute resources which otherwise would not be available.
An environment managing the resources of many cooperating diverse comput-
ers and peripherals is known as metacomputer. Without doubt, an environ-
ment build around a "metacomputer," will in
uence not only developments
in telemedicine but also in other applications areas.

One of the goals of this paper it to examine the possibility to reuse existing
metacomputing technologies for telemedicine. First, we will de�ne the term
telemedicine and derive necessary requirements that in
uence the design of a
compute infrastructure. We show that this infrastructure is similar to existing
metacomputing testbeds as used in the Globus metacomputing framework.
We analyze the Globus metacomputing framework and indicate where it can
help in order to support telemedical applications.

2 Telemedicine

Telemedicine is an emerging discipline, which utilizes the newest technologies
to transmit medical information with the help of electric signals. From this
broad de�nition, it is clear that the applications in telemedicine are of a wide
spectrum [26,20,24,25,27,23]. Telemedicine is used in the following areas:

� Tele consulting and assistance
� Remote supervision
� Remote consulting
� Medical Video Conferencing

� Virtual medical libraries
� Document distribution via WWW
� Medical databases
� Research databases

2

� Virtual medical stores
� Accounting
� Product databases
� Service Brokers

This list is not comprehensive but shows some examples where telemedicine is
used currently. In particular, telemedicine is in wide practical use for telecon-
sulting between doctors in geographically disperse locations. Video conferenc-
ing is used for diagnosing, as well as, educational purposes. Today, material
containing medical information is often distributed via the WWW. The func-
tionality of the WWW in the area of telemedicine reaches from buying medical
products to a visit of a virtual telemedical o�ce. Telemedicine is successfully
used to reach underserved areas. Some of the leading goals of telemedicine are
to enable

� an increase of the availability of services,
� instant access to data,
� secure access and exchange of data,
� user friendly access,
� a high quality of service, and
� to reduce the cost for the health service.

To determine the requirements of a telemedical environment we analyze the
simple scenario depicted in Figure 1. A patient is picked up by an ambulance,
brought to the hospital and examined by a doctor with support of a nurse.
Many interactions take place including the communication with a laboratory,
as well as, the lookup of medical data in an external database collected by
researchers. A unique aspect of a telemedical environment is that some med-
ical equipment and other resources are mobile. In addition, the patient itself
is exposed to di�erent environments at di�erent times. The scenario can be
extended in many ways. It would be bene�cial to equip the ambulance with
a general position system (GPS) which inputs data to a tra�c control and
prediction system in order to �nd the fastest way to transport the patient to
the hospital. Data gathered in the ambulance could be transferred on hand-
held devices or via wireless communication devices to the hospital database.
This rapid information exchange is essential for the decision process to invoke
a proper treatment for the patient.

In order to build a telemedical environment for our previous scenario we need
to include many di�erent resources as categorized in Figure 2. Hardware re-

sources allow to perform computations, measurements, and the visualization
of results. Since they can be on di�erent geographical locations, it must be
possible to communicate between them via networks. Software resources allow
the utilization of the hardware resources with the help of specialized programs.
Very important components of a telemedical infrastructure are knowledge re-

3

sources. They include doctors, nurses, researchers, but also more abstract re-
sources like libraries and databases. They are especially important since they
build the heart of a functional health care environment.

The previous scenarios suggest a set of requirements for a telemedical com-
puting infrastructure:

� Multiple administrative domains. The resources used in the telemedical envi-
ronment are not owned or administered by a single entity. The need to deal
with multiple administrative entities complicates the already challenging
network security problem, as di�erent entities may use di�erent authenti-
cation mechanisms, authorization schemes, and access policies. The need to
execute user-supplied code at di�erent sites introduces additional concerns.

� Heterogeneous community. The users of a telemedical infrastructure have
di�erent requirements and goals which leads. The integration of a heteroge-
neous community in a telemedical structure poses many problems and can
lead to con
icts. An example for such a con
ict is the requirement to build
a transparent system for the user while enabling maximum security for data
access (see below).

� Heterogeneity at multiple levels. Both the computing resources used to con-
struct the telemedical infrastructure and the networks that connect the
resources are often heterogeneous. Heterogeneity arises at multiple levels,
ranging from physical devices, through system software, to scheduling and
usage policies.

� Unpredictable structure. Traditionally, high-performance computing appli-
cations have been developed for a single class of system with well-known
characteristics|or even for one particular computer. In contrast, telemedicine
requires executing diverse applications in a wide range of environments,
constructed dynamically from available resources. Geographical distribu-
tion and complexity are other factors that make it di�cult to determine
system characteristics such as network bandwidth and latency a priori.

� Dynamic and unpredictable behavior. Traditional high-performance systems
use scheduling disciplines such as space sharing or gang-scheduling to pro-
vide exclusive|and hence predictable|access to processors and networks.
In telemedical environments, resources|especially networks|are more likely
to be shared. One consequence of sharing is that behavior and performance
can vary over time. For example, in wide area networks built using the Inter-
net Protocol suite, network characteristics such as latency, bandwidth and
jitter may vary as tra�c is rerouted. Large-scale telemedical systems may
also su�er from network and resource failures. In general, it is a di�cult
problem to guarantee even minimum quality of service requirements.

� Transparency for users and patients. Humans have a very important role in
the telemedical environment. Many resources are used by doctors, nurses,
researchers and healthcare providers. This variety of potential users of a
telemedical environment results in di�erent requirements for each of the

4

users. The requirements are often overlapping. Goal should be to simplify
a task for a user of the telemedical environment leading to a transparent
environment.

� Need for an open environment. The example to add a tra�c control system
based on a GPS is a prime example for the need that a telemedical environ-
ment needs to be able to incorporate other technologies in order to increase
its functionality.

� Need for Security. Since the data stored in the databases include sensitive
data special security mechanisms have to be in place to ensure the integrity
of databases or other sources for information. Many administrative domains
are likely to use �rewalls. A telemedical infrastructure must have a way to
include mechanisms dealing with the security.

� Need to discover the state of the environment. Fundamental to many issues
as listed above is the need for mechanisms that allow telemedical appli-
cations to obtain real-time information about system structure and state.
This information is used to make con�guration decisions and to notify when
information changes. Required information can include network activity,
available network interfaces, processor characteristics, and authentication
mechanisms. It also includes information about the availability and special
knowledge of doctors, nurses and others, as well as their availability. Such
interactions can be modeled with the help of complex networked systems.
Decision processes require combinations of these data in order to achieve
e�cient end-to-end con�guration of complex networked systems.

� Scale and the need for selection. Due to the extreme distributed nature of
telemedical data and resources, it is important to develop a scalable telemed-
ical infrastructure. Resource selection must be provided to allow the access
of a subset of resources. Deadlock prevention and detection algorithms have
to be included in resource selection and reservation strategies.

� Need for resource scheduling. Due to the high degree of variability in a
telmedical environment sophisticated scheduling pollicies have to be sup-
ported with the help of specialized scheduling and resource allocation algo-
rithms.

� Need for quality of service. It is critical to provide a Quality of Service
(QoS) for many telemedical applications. While in some videoconferences
a drop of frames might be expectable, a remote computational steering
of a remote surgery should not be interrupted. This technology restriction
will pose also restrictions to what is possible in a telemedical environment.
Careful analysis of the tasks to be performed and their reliability has to
be undertaken to not jeopardize the outcome of, for example, a remote
operation.

Before we will go into more detail for each of the categories, we would like
to introduce the Globus Metacomputing Toolkit. This way we can show more
easily how a metacomputing toolkit can enable a telemedical environment on
di�erent abstraction levels.

5

3 The Globus Metacomputing Infrastructure Toolkit

Emerging telemedicine applications require the ability to exploit diverse and
geographically distributed resources. High-speed networks are used to inte-
grate advanced visualization devices, sophisticated instruments, large databases,
archival storage devices, PC's, workstations, and supercomputers. This form
of telemedical environment is similar to networked virtual supercomputers also
known asmetacomputer. Metacomputers are already being used in many scien-
ti�c applications areas. Requirements necessary for a telemedicine infrastruc-
ture are similar to requirements found in a typical metacomputing environ-
ment. Thus, metacomputing environments can be used to enable a more pow-
erful and uni�ed computational infrastructure for telemedicine. The Globus
metacomputing toolkit can provide the necessary low level mechanisms to en-
able a large scale telemedical infrastructure. The Globus toolkit components
are designed in a modular fashion and can be extended to support the speci�c
requirements for telemedicine.

A number of pioneering e�orts have produced useful services for the metacom-
puting application developer. For example, Parallel VirtualMachine (PVM) [10]
and the Message Passing Interface (MPI) [12] provide a machine-independent
communication layer, Condor [14] provides a uniform view of processor re-
sources, Legion [11] builds system components on a distributed object-oriented
model, and the Andrew File System (AFS) [17] provides a uniform view of
�le resources. Each of these systems has been proven e�ective in large-scale
application experiments.

Our goal in the Globus project is not to compete with these and other re-
lated e�orts, but rather to provide basic infrastructure that can be used to
construct portable, high-performance implementations of a range of such ser-
vices. To this end, we focus on (a) the development of low-level mechanisms
that can be used to implement higher-level services, and (b) techniques that
allow those services to observe and guide the operation of these mechanisms.
This approach reduces the complexity and improves the quality of metacom-
puting software by allowing a single low-level infrastructure to be used for
many purposes, and by providing solutions to the con�guration problem in
metacomputing systems.

The Globus toolkit comprises a set of modules. Each module de�nes an inter-

face, which higher-level services use to invoke that module's mechanisms, and
provides an implementation, which uses appropriate low-level operations to
implement these mechanisms in di�erent environments. Currently identi�ed
toolkit modules are as follows:

� Resource location and allocation. This module provides mechanisms for ex-

6

pressing application resource requirements, for identifying resources that
meet these requirements, and for scheduling resources once they have been
located. Resource location mechanisms are required because applications
generally cannot be expected to know the exact location of required re-
sources, particularly when load and resource availability can vary. Resource
allocation involves scheduling the resource and performing any initializa-
tion required for subsequent process creation, data access, etc. In some
situations|for example, on some supercomputers|location and allocation
must be performed in a single step.

� Communications. Basic communications mechanisms must permit the e�-
cient implementation of a wide range of communication methods, including
message passing, remote procedure call, distributed shared memory, stream-
based, and multicast. Mechanisms must be cognizant of network quality of
service parameters such as jitter, reliability, latency, and bandwidth.

� Uni�ed resource information service. This component provides a uniform
mechanism for obtaining real-time information about metasystem structure
and status. The mechanism must allow components to post as well as receive
information. Support for scoping and access control is also required.

� Authentication interface. The authentication interface module provides ba-
sic authentication mechanisms that can be used to validate the identity of
both users and resources. These mechanisms provide building blocks for
other security services such as authorization and data security that need to
know the identity of parties engaged in an operation.

� Process creation. It is essential to be able to initiate computation on a re-
source once it has been located and allocated. This task includes setting
up executables, creating an execution environment, starting an executable,
passing arguments, integrating the new process into the rest of the compu-
tation, and managing termination and process shutdown.

� Data access. The data access module provides high-speed remote access to
persistent storage such as �les. Some data resources such as databases may
be accessed via distributed database technology or the Common Object
Request Broker Architecture (CORBA). The Globus data access module
addresses the problem of achieving high performance when accessing parallel
�le systems and network-enabled I/O devices such as the High Performance
Storage System (HPSS).

Together, the various Globus toolkit modules can be thought of as de�ning
building blocks of a metacomputing virtual machine. The de�nition of this
virtual machine simpli�es application development and enhances portability
by allowing programmers to think of geographically distributed, heterogeneous
collections of resources as uni�ed entities. Using this building blocks enables
one to design a metacomputer, as been demonstrated at SC'97 with the Gusto
testbed which had an overall computational power of about 2T
ops.

We now describe in more detail the Globus communications, information ser-

7

vice, authentication, and data access services. In each case, we outline how the
component maps to di�erent implementations, is used to implement di�erent
higher-level services.

3.1 Communications

The success of telemedecine is largely dependent on an extensive network
infrastructure. The network technologies used in a telemedical environment
include asynchronous transfer mode (ATM), satellites, asymmetrical digital
subscriber line (ADSL), and cable modems. Lower bandwidth technologies
are standard analog telephone lines, and digital networks with integrated ser-
vices digital network (ISDN). The proper selection of a communication service
is determined by the type, the amount, and the urgency of the information
exchange (Table 1). The choice is often determined by a cost-bene�t factor.
A compute environment must support such a cost function provided by the
administrative domain. The Globus communication module can be used to
implement the necessary infrastructure to allow to geographical disperse com-
puters to communicate with each other.

The Globus communications module is based on the Nexus communication
library [8]. Nexus de�nes �ve basic abstractions: nodes, contexts, threads,
communication links, and remote service requests. The Nexus functions that
manipulate these abstractions constitute the Globus communication interface.
This interface is used extensively by other Globus modules and has been
used to construct various higher-level services, including parallel program-
ming tools. Active Messages [15] and Fast Messages [21] have similarities in
goals and approach, but there are also signi�cant di�erences [6]. The Nexus
interface and implementation support rule-based selection of the methods|
such as protocol, compression method, and quality of service|used to perform
communication [6]. Di�erent communication methods can be associated with
di�erent communication links, with selection rules determining which method
should be used when a new link is established. These mechanisms have been
used to support multiple communication protocols [6] and selective use of
secure communication [7] in heterogeneous environments. The Nexus commu-
nication Library is capable to support most requirements that are posed by a
telemedical infrastructure.

The rule based selection of communication protocols, compression methods
and quality of service makes the Nexus library an ideal choice for a low level
communication module. Higher level communication services are available via
MPI a partial implementation of Nexus in Java. The Java-Nexus port allows
that PC's can be integrated in a large-scale computational framework. Due
to the amount of sensitive data transmitted over networks, it is essential to

8

build a secure network infrastructure. Nexus allows using a key based security
mechanism for the communication between di�erent computational nodes.

3.2 Computations

A powerful communications library provides the basis for distributing the
computational workload over many processors. The usage of today's super-
computers makes it possible to modify the traditional view-only utilization
of expensive input devices (computed tomography) towards real time steering
during an examination. This has the advantage that during an exam regions
of interest can be explored immediately and a diagnosis can be achieved more
quickly and accurately (Figure 3). Other examples for compute intense appli-
cations are the x-ray analysis of large molecular structures with the help of
unique beamlines at synchrotrons, and the analysis of gene sequences [29,9].
Thus, the availability of immense computational power enabled by an inte-
grated network infrastructure will allow to reduce the turnaround times for
existing applications and to solve problem instantiations which were simply to
big to be solved on a previous computational (telemedicine) infrastructures.

3.3 Metacomputing Directory Service

Metacomputing environments depend critically on access to information about
the underlying networked supercomputing system. Required information can
include con�guration details about resources such as the amount of memory,
CPU speed, number of nodes in a parallel computer, or the number and type
of network interfaces available. Important are also instantaneous performance
information, such as point-to-point network latency, available network band-
width, and CPU load. Furthermore, application-speci�c information, such as
memory requirements or program parameters found e�ective on previous runs
have to be considered.

Di�erent data items will have di�erent scopes of interest and security require-
ments, but some information at least may potentially be required globally, by
any Globus component. Information may be obtained from multiple sources:
for example, from standard information services such as the Network Informa-
tion Service (NIS) or Simple Network Management Protocol (SNMP); from
specialized services such as the Network Weather Service [30]; or from external
sources such as the system manager or an application.

Globus de�nes a single, uni�ed access mechanism for this wide range of in-
formation, called the Metacomputing Directory Service (MDS) [5]. Building
on the data representation and application programming interface de�ned by

9

the Lightweight Directory Access Protocol (LDAP), MDS de�nes a framework
in which can be represented information of interest in distributed computing
applications.

This service can provide the basic information for static and dynamically
changing resources in a telemedical infrastructure. The MDS cannot only be
used to represent information about the compute environment, but it also
addresses the problem of how to store other information in a uniform way
across heterogeneous compute platforms. In a telemedicine environment infor-
mation such information could include equipment which does not perform a
compute function but rather a data acquisition function (e.g., expensive mi-
croscopes, imaging technology). MDS (and LDAP) could be used to store basic
patient locator information as patients themselves are dynamically changing
resources; however, detailled patient information belongs in a relational or ob-
ject database, where issues such as security, data integrity, and transaction
processing are addressed more adequately.

Each administrative domain can be responsible for its own LDAP server(s).
This helps to simplify the issue of security and allow each domain be in control
of its own security policies. It is straightforward to create a representation for
patient data as a set of LDAP objectclass speci�cations. Nevertheless, better
tools have to be developed to be able to enhance the object de�nition of objects
to be stored in the LDAP tree. Work on active directories will lead to these
enhancements in all likelihood.

As a concluding example of how MDS can be employed in telemedicine, the
information about a patient can be stored in the MDS as a hybrid data object
consisting of open and closed parts. The open part is needed for the patient to
participate as a resource in the metacomputing (telemedicine) environment.
The closed part is needed to �nd detailled (and secure) information about the
patient. The closed part only contains a single item of information to locate
the patient data, e.g. an object identi�er, in a proprietary database. This
pragmatic design consideration allows each administrative domain to manage
its proprietary information yet allows other domains to access proprietary data
objects using vendor-speci�c programming interfaces. Furthermore, the ability
to interface to relational and object technology allows the best technology
to be provided for the many consumers of information in the telemedicine
environment. Relational database technology allows the de�nition of views to
expose only the necessary and desired information to the outside world.

Special care has to be taken in order to evaluate if the database technology is
supported on most of the relevant compute platforms for telemedicine. LDAP
is supported on most of them ranging form PC's to Unix workstations to
supercomputers. Since the source code is publicly available, a port to other
platforms seems to be straightforward. In addition, LDAP is today available as

10

a pure Java implementation, which will eliminate future compatibility issues.

3.4 Authentication Methods

The Globus authentication module supports password, Unix RSH, and Se-
cure Socket Layer authentication. To increase the degree of abstraction at
the toolkit interface, we are moving towards the use of the Generic Security
System (GSS) [13]. GSS de�nes a standard procedure and API for obtain-
ing credentials (passwords or certi�cates), for mutual authentication (client
and server), and for message-oriented encryption and decryption. GSS is in-
dependent of any particular security mechanism and can be layered on top of
di�erent security methods, such as Kerberos and SSL.

GSS must be altered and extended to meet the requirements of metacomputing
environments. As a metacomputing system may use di�erent authentication
mechanisms in di�erent situations and for di�erent purposes, we require a
GSS implementation that supports the concurrent use of di�erent security
mechanisms. In addition, inquiry and selection functions are needed so that
higher-level services implementing speci�c security policies can select from
available low-level security mechanisms. The Globus authentication interface
can be used to implement a range of di�erent security policies. We are currently
investigating a policy that de�nes a global, public key-based authentication
space for all users and resources. That is, we provide a centralized authority
that de�nes system-wide names (\accounts") for users and resources. These
names allow an application to use a single \user id" and \password" for all
resources. They also permit the application to verify the identity of requested
resources. Note that this policy does not address authorization: resources can
use their usual mechanisms to determine the users to which they will grant
access.

While not practical for large-scale, open environments, the use of a central-
ized authority to identify users and resources is appropriate for limited-scale
testbed environments such as the I-WAY and GUSTO (see below). The ap-
proach has the signi�cant advantage that it can be implemented easily with
current certi�cate-based authentication protocols, such as that provided in
the Secure Socket Library (SSL). Note that while names (certi�cates) are is-
sued by a centralized certi�cate authority, the authentication of users and
services involves only the agents being authenticated; it does not require any
interaction with the issuing authority.

In the longer term, authentication and authorization schemes must address
the requirements of larger, dynamic, heterogeneous communities, in which
trust relationships span multiple administrative domains and can be irregular

11

and selective. Some member organizations will be more trusting of speci�c
members than others; still others may be competitors. Some members may
feel the need to control all trust relationships explicitly, even if it means that
fewer community assets are available for their use; this may stimulate the
evolution of virtual communities with their own set of trust and authorization
relationships. Community members willing to delegate to other members the
ability to extend relationships on their behalf may more fully enjoy the bene�ts
of membership in the greater community. In the long run, membership in the
community is likely to be bolstered by an economy-of-scale argument which
will be a direct consequence of sharing and trust.

Our certi�cate-based policy can be extended to support limited forms of trust
delegation. Globus resource certi�cates can be given to sites with multiple
resources (or users). These sites can in turn set up a local certi�cate author-
ity, which signs certi�cates that it issues with the certi�cate issued by the
Globus authority. This situation is acceptable if the user (or resource) trusts
the administration of the site issuing the Globus-signed certi�cate.

A certi�cate based authentication mechanism seems to be su�cient for a
telemedical infrastructure. Each domain will handle its certi�cates to allow
only access to site or application relevant services. This authentication can
also be used to allow secure transmission on data via communication links.

3.5 Data Access Services

Services that provide metacomputing applications with access to persistent
data can face stringent performance requirements and must support access
to data located in multiple administrative domains. Distributed �le systems
such as the Network File System and Distributed File System address remote
accesses to some extent but have not been designed for high-performance
applications. Parallel �le systems and I/O libraries have been designed for
performance but not for distributed execution.

To address these problems, the Globus data access module de�nes primitives
that provide remote access to parallel �le systems. This remote I/O (RIO)
interface (Figure 5) is based on the abstract I/O device (ADIO) interface [28].
ADIO de�nes an interface for opening, closing, reading and writing parallel
�les. It does not de�ne semantics for caching, �le replication, or parallel �le
descriptor semantics. Several popular I/O systems have been implemented
e�ciently on ADIO [28]. RIO extends ADIO by adding transparent remote
access and global naming using a URL-based naming scheme.

Together with a directory service as previously introduced the data access can
be achieved uniformly over a large number of compute and data resources.

12

Even though for the programmer the direct �le access if of particular interest,
it is more essential for an applications programmer to locate the \object"
patient, MRI, etc. This leads us to the need to introduce high level services,
which can be provided while reusing the above introduced low level services.
Again, as addressed earlier in the paper, access to patient data can be done
securely. Di�ering views of patient data can be exposed via a hybrid design
which incorporates LDAP and relational or object database technologies.

3.5.1 Parallel Programming Interfaces

Numerous higher level parallel programming interfaces 4 have been adapted
to use Globus authentication, process creation, and communication services,
hence allowing programmers to develop metacomputing applications using fa-
miliar tools. These interfaces include a complete implementation of MPI (and
hence tools layered on top of MPI, such as many High Performance Fortran
systems); Compositional C++ [2], a parallel extension to C++; Fortran M,
a task-parallel Fortran; nPerl, a version of the Perl scripting language ex-
tended with remote reference and remote procedure call mechanisms; and
NexusJava, a Java class library that supports remote procedure calls between
Java and other Nexus-enabled components. These higher-level programming
interfaces are of special importance since they will be used in the application
implementation of a telemedical infrastructure. Due to the heterogeneity of
the many telemedical applications, it is important to support a wide range
of higher level programming interfaces. The availability of proper high level
programming interfaces will ultimately reduce the development costs of the
telemedical infrastructure. One very important property about the Globus en-
vironment is stressed here to fully demonstrate the usefulness of the Globus
toolkit components: The higher level programming modules all use the Nexus
communication library. This makes it possible to develop truly heterogeneous
programs, which use di�erent higher-level parallel programming interfaces.
While looking back to the scenario introduced at the beginning of the paper,
such a truly heterogeneous application could use a Fortran based program
for weather prediction and use the Nexus communication routines to inter-
face with a tra�c control simulation system running on a supercomputer in
CC++. Furthermore, the data collected in the ambulance with specialized in-
struments could be transferred to the hospital which displays this information
with a Java based GUI.

3.6 Resource Scheduling

Many telemedical applications make use of expensive equipment. Schedul-
ing and reservation algorithms and policies have to be developed in order to

13

make maximal use of the infrastructure. Not only the instruments have to be
scheduled and reserved, but also the computational and knowledge resources
in order to, make a real time usage possible. We can distinguish scheduled
and unscheduled modes of operation. In scheduled modes, resources, once ac-
quired, are dedicated to an application. In unscheduled mode, applications
use otherwise idle resources that may be reclaimed if needed; Condor [14]
is one system that supports this mode of operation. In general, scheduled
mode is required for tightly coupled simulations, particularly those with time
constraints, while unscheduled mode is appropriate for loosely coupled appli-
cations that can adapt to time-varying resources. A possible example to use
such an environment is the distributed solution of gene sequencing problems
which will have increased importance in the near future[9]. The resources to be
scheduled include desktop supercomputers, smart instruments, collaborative
environments [3,4], and distributed supercomputers [16,18,19].

Telemedical applications often need to operate networking and computing
resources at close to maximum performance. Hence, metacomputing environ-
ments for telemedical applications must allow programmers to observe di�er-
ences in system resource characteristics and to guide how these resources are
used to implement higher-level services. Achieving these goals without compro-
mising portability is a signi�cant challenge for the designer of metacomputing
software.

We use the Globus communication module to illustrate some of these issues.
This module must select, for each call to its communication functions, one of
several low-level mechanisms. On a local area network, communication might
be performed with TCP/IP, while in a parallel computer, specialized high-
performance protocols typically o�er higher bandwidth and lower latencies.
In a wide area environment, specialized ATM protocols can be more e�cient.
The ability to manage protocol parameters (TCP packet size, network quality
of service) further complicates the picture. The choice of low-level mechanism
used for a particular communication is a nontrivial problem that can have
signi�cant implications for application performance.

Globus toolkit modules address this problem by providing interfaces that allow
the selection process to be exposed to, and guided by, higher-level tools and
applications. These interfaces provide rule-based selection, resource property
inquiry, and noti�cation mechanisms.

� Rule-based selection. Globus modules can identify selection points at which
choices from among alternatives (resources, parameter values, etc.) are made.
Associated with each selection point is a default selection rule provided
by the module developer (e.g., \use TCP packet size X," \use TCP over
ATM"). A rule replacement mechanism allows higher-level services to spec-
ify alternative strategies (\use TCP packet size Y ," \use specialized ATM

14

protocols").
� Resource property inquiry. Information provided by the uni�ed information
service can be used to guide selection processes within both Globus modules
and applications that use these modules. For example, a user might provide
a rule that states \use ATM interface if load is low, otherwise Internet,"
hence using information about network load to guide resource selection.

� Noti�cation. A noti�cation mechanism allows a higher-level service or appli-
cation to specify constraints on the quality of service delivered by a Globus
service and to name a call-back function that should be invoked if these con-
straints are violated. This mechanism can be used, for example, to switch
between networks when one becomes loaded.

Higher-level services and applications can use Globus selection, inquiry, and
noti�cation mechanisms to con�gure computations e�ciently for available re-
sources, and/or to adapt behavior when the quantity and/or quality of avail-
able resources changes dynamically during execution. For example, consider
an application that performs computation on one computer and transfers data
over a wide area network for visualization at remote sites. At startup time, the
application can determine available computational power and network capac-
ity and con�gure its computational and communication structures appropri-
ately (e.g., it might decide to use compression for some data but not others).
During execution, noti�cation mechanisms allow it to adapt to changes in
network quality of service (see �gures 6 and 7).

4 Future opportunities

Having demonstrated a metacomputing environment in a real testbed, new
research opportunities will arise. Telemedicine is just one of them. We would
like to emphasize that telemedicine is an ideal application to test the principles
of a metacomputer due to its inherent heterogeneous characteristics. Assuming
the compute and network power is in place one will ask, what is the next step?

We predict that the accuracy of a medical exam is likely to improve. We
also believe that research areas that are dependent on many calculations or
a huge number of data will have an increased impact on treatments. Further-
more, we will see an increased number of interdisciplinary research enhance
our knowledge about medicine. Examples will include for example sophisti-
cated observation networks which warn patients weather conditions, home
monitoring of a patients health progress with wireless technology, the inte-
gration of immense amounts of data in research databases. Furthermore, a
metacomputing environment as de�ned with Globus toolkit components will
allow specifying various access policies of data in the highly controversial issue
of a global database. Each information provider will be able to establish its

15

own information policy.

5 Conclusion

The Globus project is attacking the metacomputing software problem from
the bottom up, by developing basic mechanisms that can be used to imple-
ment a variety of higher-level services. Communication, resource location, re-
source allocation, information, authentication, data access, and other services
have been identi�ed, and considerable progress has been made toward con-
structing quality implementations. The de�nition, development, application,
evaluation, and re�nement of these components are ongoing processes that we
expect to proceed for the next two years at least. We hope to involve more of
the metacomputing community in this process, by adapting relevant higher-
level services (e.g., application-level scheduling [1], performance steering [22],
object-based libraries [11]) to use Globus mechanisms, and by participating in
the construction of additional testbeds (e.g., GUSTO).

The Globus project is also addressing the con�guration problem in metacom-
puting systems, with the goal of producing an Adaptive Wide Area Resource
Environment that supports the construction of adaptive services and applica-
tions. We have introduced selection, information, and noti�cation mechanisms
and have de�ned Globus component interfaces so that these mechanisms can
be used to guide the con�guration process. Preliminary experiments with dy-
namic communication selection suggest that these con�guration mechanisms
can have considerable value [6].

In summary, we list three areas in which we believe the Globus project has
already made contributions and in which we hope to see considerable further
progress:

� The de�nition of a core metacomputing system architecture on which a
range of alternative metacomputing environments can be built.

� The development of a framework that allows applications to respond to
dynamic behaviors in the underlying metacomputing environment, and the
de�nition and evaluation of various adaptation policies.

� The demonstration in testbeds such as the I-WAY and GUSTO that useful
higher-level services can be layered e�ectively on top of the interfaces de�ned
by the Globus toolkit, and that automatic con�guration mechanisms can be
used to enhance portability and performance.

Throughout paper we showed examples how to use the di�erent low level and
high level services to support a telemedical infrastructure. Since the character-
istics of a telemedical environment are almost identical to a metacomputing

16

environment, the Globus toolkit components can be reused to build a telemed-
ical environment. In addition, the Globus toolkit shows how novel approaches,
e.g., the use of directory services can be extended to represent patient data in
a distributed compute environment. The authentication mechanism with keys
can serve as an example how to enable secure communication between di�er-
ent administrative domains. Compatibility is assured due to the availability
of the Globus toolkit components on a variety of platforms and the availabil-
ity of a Java based implementation. Due to the modular characteristic of the
toolkit it can be extended which is important for a changing infrastructure in
a telemedical environment.

6 Acknowledgements

This work was supported by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the O�ce of Computational and
Technology Research, U.S. Department of Energy, under Contract W-31-109-
Eng-38. Globus research and development is supported by DARPA, DOE, and
NSF.

References

[1] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-
level scheduling on distributed heterogeneous networks, in Proceedings of
Supercomputing '96, ACM Press, 1996.

[2] K. M. Chandy and C. Kesselman, CC++: A declarative concurrent object
oriented programming notation, in Research Directions in Object Oriented
Programming, The MIT Press, 1993, pp. 281{313.

[3] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann,
Remote engineering tools for the design of pollution control systems for
commercial boilers, International Journal of Supercomputer Applications, 10
(1996), pp. 208{218.

[4] T. L. Disz, M. E. Papka, M. Pellegrino, and R. Stevens, Sharing visualization
experiences among remote virtual environments, in International Workshop
on High Performance Computing for Computer Graphics and Visualization,
Springer-Verlag, 1995, pp. 217{237.

[5] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and
S. Tuecke, A directory service for con�guring high-performance distributed
computations, in Proc. 6th IEEE Symp. on High Performance Distributed
Computing, IEEE Computer Society Press, 1997, pp. 365{375.

17

[6] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke, Managing multiple
communication methods in high-performance networked computing systems,
Journal of Parallel and Distributed Computing, 40 (1997), pp. 35{48.

[7] I. Foster, N. Karonis, C. Kesselman, G. Koenig, and S. Tuecke, A secure
communications infrastructure for high-performance distributed computing, in
Proc. 6th IEEE Symp. on High Performance Distributed Computing, IEEE
Computer Society Press, 1997, pp. 125{136.

[8] I. Foster, C. Kesselman, and S. Tuecke, The Nexus approach to integrating
multithreading and communication, Journal of Parallel and Distributed
Computing, 37 (1996), pp. 70{82.

[9] T. Gasterland, Magpie system.
http://www.mcs.anl.gov/home/gaasterl/papers.html.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam,
PVM: Parallel Virtual Machine|A User's Guide and Tutorial for Network
Parallel Computing, MIT Press, 1994.

[11] A. Grimshaw and W. Wulf, Legion { a view from 50,000 feet, in Proc. 5th IEEE
Symp. on High Performance Distributed Computing, IEEE Computer Society
Press, 1996, pp. 89{99.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface, The MIT Press, 1994.

[13] J. Linn, Generic security service application program interface, Internet RFC
1508, (1993).

[14] M. Litzkow, M. Livney, and M. Mutka, Condor - a hunter of idle workstations,
in Proc. 8th Intl Conf. on Distributed Computing Systems, 1988, pp. 104{111.

[15] A. Mainwaring, Active Message applications programming interface and
communication subsystem organization, tech. rep., Dept. of Computer Science,
UC Berkeley, Berkeley, CA, 1996.

[16] C. Mechoso et al., Distribution of a Coupled-ocean General Circulation Model
across high-speed networks, in Proceedings of the 4th International Symposium
on Computational Fluid Dynamics, 1991.

[17] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal,
and F. Smith, Andrew: A distributed personal computing environment,
Communications of the ACM, 29 (1986), pp. 184{201.

[18] J. Nieplocha and R. Harrison, Shared memory NUMA programming on the I-
WAY, in Proc. 5th IEEE Symp. on High Performance Distributed Computing,
IEEE Computer Society Press, 1996, pp. 432{441.

[19] M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist,
K. Keahey, J. Ostriker, J. Shalf, J. Welling, and S. Yang, Galaxies collide on the
I-WAY: An example of heterogeneous wide-area collaborative supercomputing,
International Journal of Supercomputer Applications, 10 (1996), pp. 131{140.

18

[20] U. C. O. of Technology Assessment, Bringing health care online: the role of
information technologies. Washington, DC: U.S. Government Printing O�ce,
OTA-ITC-624, Sept. 95.

[21] S. Pakin, M. Lauria, and A. Chien, High performance messaging on
workstations: Illinois Fast Messages (FM) for Myrinet, in Proceedings of
Supercomputing '95, IEEE Computer Society Press, 1996.

[22] D. Reed, C. Elford, T. Madhyastha, E. Smirni, and S. Lamm, The Next Frontier:
Interactive and Closed Loop Performance Steering, in Proceedings of the 1996
ICPP Workshop on Challenges for Parallel Processing, Aug. 1996, pp. 20{31.

[23] Telemedicine and advanced technology research center(tatrc).
http://www.matmo.org.

[24] Links to telemedinine on the net. http://www.jma.com.au/telelink.htm.

[25] Links to telemedinine on the net.
http://www.yahoo.com/Health/Medicine/Informatics/Telemedicine/.

[26] Telemedicine information exchange. http://tie.telemed.org.

[27] Telemedicine
report to congress. http://www.ntia.doc.gov/reports/telemed/index.htm, Jan.
97. A report on the use of advanced telecommunications services for medical
purposes, that also examines questions relating to e�cacy,safety and quality of
services, together with other legal, medical and economic issues.

[28] R. Thakur, W. Gropp, and E. Lusk, An abstract-device interface for
implementing portable parallel-I/O interfaces, in Proceedings of The 6th
Symposium on the Frontiers of Massively Parallel Computation, October 1996.

[29] G. von Laszewski and I. Foster, Supercomputing in structural biology.
htttp://www.mcs.anl.gov/xray.

[30] R. Wolski, Dynamically forecasting network performance using the network
weather service, Tech. Rep. TR-CS96-494, U.C. San Diego, October 1996.

19

Hospital

Lab

Patient

NIH

Analysis
Engine

Doctor

Physician

Researcher

Ambulance

EMT

Patient

Patient

Database

Nurse

Database

Fig. 1. An example scenario for a telemedical infrastructure

Table 1
Storage requirements for imaging techniques and transmission times while using
di�erent network transport medias/services

Phone ISDN T1 T3 ADSL ATM

pixels image average number calc average storage 28.8 128 1.54 45.3 1.5 155

hor vert depth of images/exam memory requirement Kbits/s Kbits/s Mbytes/s Mbytes/s Mbytes/s Mbytes/s

512 12 30 12 15 69.4 15.6 9.7 0.3 10.0 0.10

256 12 50 3 6.5 30.1 6.8 4.2 0.1 4.3 0.04

1000 8 20 45 20 92.6 20.8 13.0 0.4 13.3 0.13

1000 8 15 45 15 69.4 15.6 9.7 0.3 10.0 0.10

512 6 36 12 9 41.7 9.4 5.8 0.2 6.0 0.06

128 8 26 1 0.4 1.9 0.4 0.3 0.01 0.3 0.003

2000 10 4 180 32 148.1 33.3 20.8 0.7 21.3 0.21

4000 12 4 720 128 592.6 133.3 83.1 2.8 85.3 0.83

in min in min in sec in sec in sec in sec

20

Compute:

Parallel,
Sequential,
Cluster, ..

Communi-
cate:

Network,
Routers,

...

Libraries,
Langiages,

...

Scientific
Libraries

...

Knowledge
Exchange
Facilities

Scientists
...

Hardware
Resources

Software
Resources

Knowledge
Resources

Applications

Fig. 2. Resources needed to implement applications in a metacomputing environ-
ment

3-D image

(a) Imaging

(b) Interactive planning

CT data

Create 3-D image
of patient anatomy
showing tumor

Radiation beam parameters
(num, intensity, shape, locn)

Computed radiation dosage

CT
scanner

Super-
computer

View
Station

...
Mass-Storage

View
Station

Super-
computer

Fig. 3. Usage of supercomputers in imaging and computational steering

21

Applications

Application
Tools

High-level Services

Low-level Service Nexus

MPIResource
database

Resource
manager

Resource
broker

C++ FortranM

Security

nPerlnJava

Biology Physics ChemistryMedicine

Fig. 4. Components of the Globus toolkit

P a r a l l e l p r o g r a m s

…

Local file systems

Local file systems

RIO

RIO
server

A D I O

A D I O

MPI-IO ChemIO

Fig. 5. Remote IO mechanisms for high-performance access to remote �le systems

22

�
��

0

2 0

4 0

6 0

8 0

1 0 0

T 1 T 2 T 3 T 4

B an d w id th L aten cy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P1 P2 P3 P4

Free

System

User

Job 1

Processor

Job 6Job 5

Job 2

Job 3

Job 41

2

3

Fig. 6. A steering environment based on a metacomputing framework

“10 GFlops, CAT SCAN data,
20 Mb/sec -- for 20 mins”

“10 GB disk, exclusive
access, secure -- 10 mins”

QoS Management Resource Broker Resource Broker

Metacomputing
Information

Services

Resource
Manager

Resource
Manager

Resource
Manager

Fig. 7. Resource selection and monitoring

23

